

(Pages: 2)

Reg. No.:

Name :

First Semester M.Tech. Degree Examination, February 2015 (2013 Scheme)

Branch: Mechanical Engineering

Streams: Thermal Engineering and Propulsion Engineering

MMA 1001: APPLIED MATHEMATICS

Time: 3 Hours

Max. Marks: 60

Instruction: Answer any two questions from each Module. All questions carry equal marks.

Module - I

- 1. a) Prove that $J'_n(x) = \frac{1}{2} [J_{n-1}(x) J_{n+1}(x)]$
 - b) Prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = 0$ if $\alpha \neq \beta$ where α and β are distinct roots of $J_{n}(x) = 0$.
- 2. a) Show that $(n + 1) P_{n+1}(x) = (2n + 1) P_n(x) nP_{n-1}(x)$.
 - b) Express the polynomial $x^3 3x^2 + 4x 6$ in terms of Legendre polynomials.
- 3. Solve the boundary value problem $u_t = u_{xx}$ given that

 $u(\pi/2, t) = 0$, $u_t(0, t) = 0$; u(x, 0) = 30 Cos 5x, using Laplace Transform method.

Module - II

- 4. a) State and prove a necessary condition for $\int_a^b f(x, y, y') dx$ to be an extremum.
 - b) Prove that the extremal of the isoperimetric problem $V[y(x)] = \int_{1}^{4} (y')^2 dx$,

y(1) = 3, y(4) = 24 subject to the condition $\int_{1}^{4} y \, dx = 36$ is a parabola.

5. a) Find the integral equation corresponding to the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 5\sin x \text{ with initial condition } y(0) = 1 \text{ and } y'(0) = -2.$$

- b) Solve the integral equation $y(x) = x + 2 \int_{0}^{x} \cos(x t) y(t) dt$ by convolution method.
- 6. a) Define DFT and Inverse DFT. Find the Inverse DFT of (2, 4 + 4i, -6, 4 4i).
 - b) Find the DFT of (2, 4 + 4i, -6, 4 4i) using the FFT algorithm.

Module - III

- 7. a) Define subspace of a vector space. Give three subspaces of R3.
 - b) Define basis and dimension of a vector space. Find the dimension of the null

space and column space of
$$\begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}.$$

- 8. a) T: R³ \rightarrow R³ is defined by T (x, y, z) = (x + 2y z, y + z, x + y 2z). Show that T is linear. Also find the matrix of T relative to the basis. $v_1 = (1, -1, 1)$; $v_2 = (1, 0, -2)$; $v_3 = (1, -2, 1)$.
 - b) Show that a linear transformation T: U → V is one to one if and only if Kernal (T) = {0}.
- 9. Use Gram-Schmidt process, find an orthonormal basis of the subspace of R3

spanned by the vectors
$$\begin{cases} v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$